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Vapor–liquid equilibria (VLE) data of 2-butanolþbenzene or toluene or o- or m- or p-xylene measured by
static method at 308.15� 0.01K over the entire composition range are reported. The excess molar Gibbs
free energies of mixing (GE) for these binary systems have been calculated from total vapor pressure data
using Barker’s method. The GE for these binary systems are also analyzed in terms of the Mecke–Kempter
type of association model with a Flory contribution term using two interaction parameters and it has been
found that this model describes well the GE values of binary systems benzene or toluene.
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INTRODUCTION

Oxygenated compounds like alkanol (C1–C4) and ether have been used as octane
enhancing additives in gasoline to help in reducing automobile tail-pipe emission [1–5].
These are used as substitutes of poisonous leaded compounds and high octane
aromatics in motor fuel. These additives introduce additional oxygen into gasoline
which increases combustion efficiency, thereby reducing emission of toxic benzene,
smog forming pollutants like volatile organic compounds and nitrogen oxides, and
carbon monoxide from motor vehicles. Thus the thermo-physical properties of
systems containing these oxygenated compounds would be of great importance in
process engineering design and in formulating motor gasoline. Moreover, accurate
vaporþ liquid equilibrium (VLE) data are essential for chemical engineers to design
a distillation tower, which is the most important part of petroleum refining, and also
important to chemists to understand the nature of molecular interactions. Alkanol
molecules are known to be associated through hydrogen bonding and their mixtures
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with inert solvent like alkane show a pronounced thermodynamic non-ideal behavior.
Any excess thermodynamic property (XE) for such binary system may be considered to
consist of two parts, one resulting from breaking up of the hydrogen bonded network
and the other due to van der Waals type interaction between the alkyl chain of alkanol
and alkane. If these nonpolar solvents are replaced by a polar solvent like aromatic
hydrocarbon, known to be electron donor, an additional term corresponding to inter-
actions of �-electrons of the aromatic ring and hydroxyl group of alkanol may be
required to describe the thermodynamic behavior of alkanolþ an aromatic hydro-
carbon. A lot of work has been reported in the literature [6–16] on the excess properties
of alkanolþ nonpolar solvent, while that of alkanolþ polar solvent is relatively
rare [16–24]. These considerations prompted us to measure the VLE data on
2-butanolþ an aromatic hydrocarbon. In this article, the excess molar Gibbs free
energies of mixing (GE) of 2-butanolþ benzene or toluene or o- or m- or p-xylene at
308.15� 0.01K have been calculated from the measured VLE data using Barker’s
method [25], and their interpretation in terms of the Mecke–Kempter (MK) type
association model [9] proposed by Treszczanowicz and Benson are presented. This is
in continuation of our earlier work where the excess molar volume (VE), enthalpy
(HE), and Gibbs energy (GE) of propanolþ an aromatic hydrocarbon at 298.15K
[26,27] and VE and HE of an isomer of butanolþ an aromatic hydrocarbon at
308.15K [28–31] have been described in terms of the MK type association model.
To the best of our knowledge no VLE data have previously appeared in the literature
for the present systems at 308.15K.

EXPERIMENTAL SECTION

Benzene, toluene, and xylenes (Merck) were shaken repeatedly with 15 per cent (v/v)
concentrated sulphuric acid in a separating funnel in order to eliminate thiophene
from them until the acid layer was colorless [32]. After each shaking of a few minutes,
the mixtures were allowed to settle and the acid was drawn off. The remaining acid was
neutralized by sodium bicarbonate solution and the substance of interest was
subsequently washed with distilled water and dried over fused calcium chloride for
24 h. It was then fractionally distilled and the middle fraction of distillate was stored
over sodium wire in an amber colored bottle. 2-Butanol (Merck) was dried by refluxing
over fused calcium oxide for 5 h and then fractionally distilled [32]. The middle fraction
of distilled 2-butanol was then dried over type 3 Å molecular sieves (Merck) in amber
colored bottle for several days before use. The purities of the purified samples were
checked by measuring their densities, refractive indices, and vapor pressures at
308.15K. The densities were measured with a precision of � 0.05 kgm�3 by a specially
designed densimeter, consisting of a bulb of approximate volume 3.5� 10�5m3

attached to a calibrated capillary through a B-10 standard joint in the manner described
by Weissenberger [33]. Air buoyancy correction was also applied to achieve a greater
accuracy. Refractive indices were measured with a thermostatically controlled Abbe
refractometer (OSAW, India) using sodium D-line with an accuracy of � 1� 10�4.
The total vapor pressures of the pure components and their various binary mixtures
were measured as a function of liquid phase mole fraction of 2-butanol (x1) at
308.15K by the static method [34] in the manner described by Nigam and Mahl [35].
The height of the mercury column in the manometer was read with a cathetometer
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(OSAW, India) with a resolution of � 1� 10�5m. The uncertainties in the vapor pres-
sure measurements due to manometer were � 2.66 Pa. Condensation effect on mercury
was avoided by vacuum suction of condensed vapors from manometer after each
measurement and also mercury was changed after every four or five readings. Our
experimental values for the density, refractive index, and vapor pressure of the pure
compounds compared well with the literature values as shown in Table I. The composi-
tion of the liquid phase was determined by measuring the refractive index using an
Abbe refractometer in the manner described by Strubl et al. [41]. The uncertainties in
the liquid phase composition were about 0.01mol%.

RESULT AND DISCUSSION

The measured vapor pressure (p) for the present 2-butanol (1)þ benzene or toluene or
o- or m- or p-xylene (2) systems at 308.15K over the entire composition range are
reported in Table II and shown graphically in Fig. 1. The values of Gibbs free
energies of mixing GE as a function of composition are calculated from VLE data
using Barker’s method [25] of minimizing the pressure residual and are reported in
Table II and shown in Figs. 2 and 3. The GE values are then fitted to the following
Redlich and Kister equation

GE ¼ x1x2½Aþ Bðx1 � x2Þ þ Cðx1 � x2Þ
2
�, ð1Þ

where A, B, and C are the adjustable parameters evaluated by least-squares procedure,
recorded in Table III. The virial coefficients required for these calculations are calcu-
lated from Berthelot’s equation [42]

� ¼ 9RTc=128Pc � 27RT3
c =64PcT

2

and critical constant data used therein are taken from the literature [43]. The virial
coefficients of binary mixtures are taken as the arithmetic mean of second virial coeffi-
cients of pure components, reported in Table I.

Our calculated GE values for all the binary systems are positive over the whole
range of mole fraction of 2-butanol (x1) (Figs. 2 and 3). The GE vs. x1 plots are

TABLE I Densities �, refractive indices nD, and vapor pressures ( p) and second virial coefficients (�) of the
pure components at 308.15K

Substance � (kgm�3) nD p (kPa) � (cm3mol�1)

This work Literature This work Literature This work Literature

2-Butanol 0.79394 0.79390a 1.3908 1.39100a 4.460 4.462e �1281.22
Benzene 0.86296 0.86295b 1.4920 1.49170c 12.706 12.70d �1272.19
Toluene 0.89290 0.85285b 1.4884 1.48870c 3.801 3.8036d �1778.40
o-Xylene 0.86742 0.86738b 1.5030 1.50295d 0.882 0.8800d �2378.60
m-Xylene 0.85155 0.85157b 1.4945 1.49464d 1.104 1.100d �2347.80
p-Xylene 0.85790 0.84787b 1.4883 1.48810c 1.117 1.200d �2358.43

aRef. [36]. bRef. [37]. cRef. [38]. dRef. [39]. eRef. [40]. dT¼ 298.15K.

VAPOR–LIQUID EQUILIBRIA 449

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



TABLE II Measured vapor pressure ( p), activity coefficients (�1 and �2), residual vapor pressure
(�p¼ pexptl� pcalcd), where pcalcd is obtained from Barker’s method, and molar Gibbs energies of mixing GE

as a function of mole fraction x1 at 308.15K for 2-butanol (1)þ an aromatic hydrocarbon (2)

x1 p
(kPa)

�1 �2 �p
(kPa)

GE

(Jmol�1)

2-Butanolþ benzene
0.0476 19.98 5.1669 1.0060 �0.27 215
0.1215 20.06 3.7191 1.0367 �0.18 490
0.1926 20.00 2.8605 1.0884 0.00 694
0.2662 19.88 2.2851 1.1634 0.06 848
0.3501 19.65 1.8569 1.2756 0.15 961
0.4664 19.09 1.4909 1.4832 0.14 1016
0.5590 18.24 1.3080 1.7017 �0.05 985
0.6475 17.15 1.1874 1.9709 �0.19 898
0.7148 16.15 1.1205 2.2308 �0.16 795
0.7615 15.37 1.0840 2.4492 0.00 705
0.7970 14.54 1.0610 2.6419 0.03 626
0.8630 12.43 1.0282 3.0804 0.02 456
0.9125 10.02 1.0117 3.5006 �0.24 308
0.9661 6.98 1.0018 4.0794 �0.13 127

2-Butanolþ toluene
0.0595 6.97 4.8966 1.0022 �0.38 247
0.1307 7.62 4.2652 1.0174 �0.56 524
0.2190 8.42 3.3744 1.0700 �0.27 818
0.2875 8.82 2.7486 1.1474 0.07 996
0.3595 9.29 2.2099 1.2739 0.47 1128
0.4399 9.51 1.7518 1.4836 0.69 1202
0.5250 9.47 1.4276 1.8011 0.60 1195
0.5890 9.22 1.2579 2.1111 0.31 1133
0.6540 8.78 1.1392 2.4831 �0.09 1025
0.7095 8.31 1.0718 2.8286 �0.38 900
0.7775 7.62 1.0223 3.2388 �0.58 714
0.8335 6.91 1.0027 3.5048 �0.59 541
0.8870 6.21 0.9966 3.6335 �0.40 366
0.9375 5.47 0.9975 3.5904 �0.17 199

2-Butanolþ o-xylene
0.0580 2.36 4.8521 1.0045 �0.50 246
0.1335 3.29 4.0727 1.0232 �0.65 531
0.1995 4.02 3.5428 1.0521 �0.58 751
0.2520 4.53 3.1889 1.0850 �0.45 905
0.3070 4.98 2.8649 1.1311 �0.30 1047
0.3723 5.48 2.5276 1.2065 �0.04 1186
0.4345 5.80 2.2446 1.3076 0.15 1289
0.5010 6.02 1.9773 1.4622 0.32 1361
0.5897 6.10 1.6720 1.7899 0.42 1389
0.6612 6.01 1.4669 2.2090 0.36 1345
0.7445 5.77 1.2734 3.1201 0.15 1206
0.8225 5.45 1.1371 4.7121 �0.18 976
0.8950 5.09 1.0503 7.6596 �0.50 660
0.9475 4.77 1.0132 11.7048 �0.59 363

2-Butanolþm-xylene
0.0450 2.34 4.1172 1.0023 �0.29 169
0.1015 2.96 3.6708 1.0114 �0.43 364
0.1625 3.58 3.2819 1.0288 �0.44 556
0.2330 4.24 2.9111 1.5970 �0.35 752
0.3085 4.81 2.5740 1.1093 �0.21 931
0.3512 5.09 2.4023 1.1477 �0.11 1018
0.3955 5.37 2.2354 1.1981 0.02 1095

(Continued)
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symmetrical for the system containing benzene or toluene, but these skewed toward
the high mole fraction of 2-butanol, having a maximum GE at x1¼ 0.6–0.7. For an
equimolar mixture, GE values vary in the order: o-xylene>m-xylene> toluene>
p-xylene>benzene.

Mecke–Kempter Association Model

This model [9] was proposed by Treszczanowicz and Benson to describe excess thermo-
dynamic properties of binary alkanolþ alkane mixtures. It assumes that molar excess
Gibbs energy of mixing (GE

MK model) is composed of three type of contributions—the
combinatorial contribution as described by Flory–Huggin theory [44], the chemical
(MK type association of alkanol) contribution [9], and a physical contribution
described by Flory theory [45,46]:

GE
MK model ¼ GE

comb þ GE
MK þ GE

F ð2Þ

The combinatorial contribution is given by relation

GE
comb ¼ RT x1lnð�1=x1Þ þ x2 ln �2=x2ð Þ½ �, ð3Þ

the chemical (MK) contribution is given by

GE
MK ¼ x1RT=K��1

� �
�1ð1þ K�Þ ln ð1þ K�Þ � 1þ K��1

� �
ln 1þ K��1

� �� �
, ð4Þ

TABLE II Continued

x1 p
(kPa)

�1 �2 �p
(kPa)

GE

(Jmol�1)

0.4825 5.74 1.9362 1.3415 0.22 1206
0.5520 5.84 1.7225 1.5213 0.28 1251
0.6320 5.83 1.5054 1.8514 0.26 1243
0.7130 5.67 1.3202 2.4282 0.12 1160
0.7770 5.49 1.2005 3.2085 �0.06 1030
0.8440 5.21 1.1027 4.6241 �0.34 823
0.9135 4.96 1.0334 7.4252 �0.50 521

2-Butanolþ p-xylene
0.0480 2.67 2.5576 1.0007 0.15 118
0.1020 3.36 2.5196 1.0018 0.38 246
0.1645 3.96 2.5129 1.0022 0.37 393
0.2170 4.44 2.5164 1.0018 0.36 517
0.2835 4.98 2.5077 1.0031 0.29 673
0.3514 5.48 2.4616 1.0120 0.22 831
0.4125 5.85 2.3764 1.0347 0.17 966
0.4930 6.27 2.1982 1.1048 0.23 1124
0.5801 6.58 1.9406 1.2790 0.39 1250
0.6710 6.70 1.6437 1.6942 0.58 1299
0.7428 6.63 1.4221 2.4093 0.59 1250
0.8050 6.27 1.2568 3.6876 0.23 1123
0.8795 5.76 1.1054 7.3721 �0.46 843

VAPOR–LIQUID EQUILIBRIA 451

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



2-Butanol+Benzene

p 
/ k

P
a

0

5

10

15

20

25

2-Butanol+Toluene

0

2

4

6

8

10

2-Butanol+o-xylene

0

1

2

3

4

5

6

7

2-Butanol+m-xylene

0

1

2

3

4

5

6

7

2-Butanol+p-xylene

x
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

FIGURE 1 Experimental (�) and calculated (-) vapor pressures.
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where

K� ¼ exp 1� �h0H � T�s0H
� �

=RT � ln V�=17:12 cm3 mol�1
� �� �

ð5Þ

and the physical contribution is given by Flory

GE
F ¼ HE

F � TSE
F ð6Þ

x1
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FIGURE 3 Molar excess Gibbs energy of 2-butanol (1)þ aromatic hydrocarbon (2).
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FIGURE 2 Molar excess Gibbs energy of 2-butanol (1)þ aromatic hydrocarbon (2).
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where

HE
F ¼ x1�2 V�

1 =
~VV

� �
�12 þ

X
xiP

�
i V

�
i

~VV�1
i � ~VV�1

� �� �
ð7Þ

and

SE
F ¼ x1�2V

�
1Q12 � 3

X
xiP

�
i V

�
i =T

�
i

� �
ln ~VV�1=3

i � 1
� ��

~VV�1=3 � 1
� �h i

: ð8Þ

Calculation ofGE
MK model requires the knowledge of association constants like�v0H, �h0H,

and �s0H for these binary systems. These parameters were calculated from VE
exptl and

HE
exptl values of an equimolar binary mixture in our earlier work [28] as suggested by

Treszczanowicz and Benson [9]. Using these values of �h0H and �s0H, K
� was calculated

from Eq. (5). Using this value of K�, GE
F is computed from Eq. (6). Calculation of the

physical contribution GE
F from Eq. (6) requires two unknown interaction parameters

�12 and Q12. In order to calculate �12, V
E
F at equimole fractions is calculated from

the relation

VE
F ¼ VE

exptl � VE
MK, ð9Þ

where

VE
MK ¼ �v0Hx1h K�,�1

� �
ð10Þ

and

h K�,�1

� �
¼ �1 ln 1þ K�

� �
� ln 1þ K��1

� �� ��
K��1: ð11Þ

This value of VE
m,F is then used to calculate the Flory interaction parameter �12 using

the following set of equations [45,46]

VE
m,F ¼ V� ~VV �

X
~VVi=�i

� �h i
ð12Þ

~TT ¼ ~VV1=3 � 1
� �

= ~VV4=3
� �

ð13Þ

�12 ¼
X

�iP
�
i

� �
�
X

�iP
�
i
~TTi= ~TT

� �h i�
�1�2, ð14Þ

TABLE III Adjustable parameters A, B, and C of Eq. (1)

System A (Jmol�1) B (Jmol�1) C (J mol�1)

2-Butanolþbenzene 4049 �483 307
2-Butanolþ toluene 4824 �595 �1193
2-Butanolþ o-xylene 5440 �1566 560
2-Butanolþm-xylene 4886 1585 586
2-Butanolþ p-xylene 4546 3438 1378
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where all the terms have their usual significance [9,44–46]. The other interaction
parameter Q12 is calculated from Eq. (6) by assuming that at an equimole fraction

GE
F ¼ GE � GE

comb � GE
MK ð15Þ

and by using Eqs. (6)–(8). Method of calculation of all of these parameters
was discussed in detail in our earlier work [26]. The values of �12 and Q12, along
with association parameters �v0H,�h0H, and�s0H for all the present systems are recorded
in Table IV.

GE
MK model at other mole fractions for all these binary systems are calculated from

Eq. (2) and are plotted against mole fraction of 2-butanol (x1) in Figs. 2 and 3. It
has been observed from plots of GE

MK model and GE against x1 that the GE
MK model

values are in good agreement with GE for 2-butanolþ benzene or toluene, whereas the
agreement is poor in case of 2-butanolþ o-xylene or m-xylene or p-xylene.
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